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Three machine learning methods, genetic algorithm-multilinear regression (GA-MLR), least-squares
support vector machine (LS-SVM), and project pursuit regression (PPR), were used to investigate
the relationship between thiazoline derivatives and their fungicidal activities against the rice blast
disease. The GA-MLR method was used to select the most appropriate molecular descriptors from
a large set of descriptors, which were only calculated from molecular structures, and develop a linear
quantitative structure-activity relationship (QSAR) model at the same time. On the basis of the
selected descriptors, the other two more accurate models (LS-SVM and PPR) were built. Both the
linear and nonlinear modes gave good prediction results, but the nonlinear models afforded better
prediction ability, which meant that the LS-SVM and PPR methods could simulate the relationship
between the structural descriptors and fungicidal activities more accurately. The results show that
the nonlinear methods (LS-SVM and PPR) could be used as good modeling tools for the study of
rice blast. Moreover, this study provides a new and simple but efficient approach, which should facilitate
the design and development of new compounds to resist the rice blast disease.
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INTRODUCTION

Rice blast disease is one of the most important and damaging
diseases for rice, and it will cause substantial reduction in crop
yields (1). This disease is caused by filamentous fungus,
Pyricularia oryzae (teleomorph, Magnaporthe grisea). The
pathogenic fungus directly penetrates into the rice plant from a
cellular structure called an appressorium that is formed at the
tip of the germ tube (2). The appressoria synthesize melanin,
which is deposited between the plasma membrane and the
appressorial cell well (3). The fungus mechanically punctures
the hard epidermis of rice by using osmotic pressure and
penetrates into rice (4). The melanization of the appressorium
is essential for developing control agents against rice blast
disease (5). With this aim, the fungus requires and uses melanin-
derived pressure; thus, melanin biosynthesis inhibition has been
shown to be a promising biochemical target for the discovery
of new selective fungicides. To solve this question, many
scientists have been attempting to find new chemicals that are
effective for preventing rice blast disease.

Quantitative structure-activity relationship (QSAR) model-
ing (6-9) is a useful tool in activity assessments of many
inhibitors. The advantage of the QSAR approach over the other
methods lies in the fact that the descriptors used to build models
can be calculated from the molecular structure alone and used
computational algorithms to relate the key descriptors to the
dependent property values of interest (10). Therefore, it is
possible to explore these activities from the reliable models.
However, the main problems encountered in this research are
still the description of the molecular structure using appropriate
molecular descriptors and the selection of suitable modeling
methods. Many multivariate data analysis methods, such as
multiple linear regression (MLR) (11) or partial least-squares
(PLS) (12) and artificial neural network (ANN) (13), have been
used in QSAR studies. However, the practical usefulness of
MLR in QSAR studies is rather limited, because it provides
relatively poor accuracy; ANN can offer satisfactory accuracy
in most cases but tends to overfit the training data. In this study,
two novel approaches least-square support vector machine (LS-
SVM) and projection pursuit regression (PPR) were used to
model the fungicidal activities of thiazoline against rice blast.
The LS-SVM method, which is proposed by Suykens et al. (14),
is a simplification of traditional support vector machine (SVM).
It encompasses similar advantages with SVM and its own
additional advantages. It only requires solving a set of linear
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equations (linear programming), which is much easier and
computationally simpler than nonlinear equations (quadratic
programming) employed by the traditional SVM. The other
method PPR, which is developed by Friedman (15), seeks the
“interesting” projections of data from high-dimensional to lower
dimensional space and tries to find the intrinsic structural
information hidden in the high-dimensional data (16).

In this investigation, the descriptors, which were separately
calculated by CODESSA and DRAGON (17, 18), were com-
bined together. The genetic algorithm-multilinear regression
(GA-MLR) method was used to reduce the number of descrip-

tors, select the relevant ones, and build the linear regression
model. Afterward, the two nonlinear methods LS-SVM and PPR
were used to build the nonlinear models. The aims of this work
were to establish a robust QSAR model that could be used for
the prediction of fungicidal activity of the drugs against the rice
blast and explore the most important structure features to
facilitate developing new chemicals in the future. The prediction
results of the two nonlinear approaches (LS-SVM and PPR)
were in agreement with the experimental data in both the training
and test sets compounds. It has been proven that these two
approaches are useful and promising tools in predicting the

Table 1. Chemical Structures, Experimental Values, and Predicted Fungicidal Activities by MLR, LS-SVM, and PPR

number R1 R2
experimental

log A GA-MLR LS-SVM PPR number R1 R2
experimental

log A GA-MLR LS-SVM PPR

1 4-CH3 4′-F 1.96 2.07 2.00 1.98 51 4-OC6H5 3′-Br 0.90 1.08 1.02 0.92
2a 4-CH3 4′-Br 1.94 2.01 2.00 2.14 52 4-OC6H5 3′-F 1.23 1.19 1.16 1.19
3 4-CH2CH3 4′-Cl 2.00 1.96 2.00 1.96 53 4-Cl 3′-Cl, 4′-F 1.98 2.11 1.97 1.98
4a 4-CH2CH3 4′-C6H5 1.99 1.87 1.91 2.00 54a 4-Cl 3′-Br 1.98 2.15 2.00 2.02
5 4-CH2CH3 4′-OCF3 1.99 1.92 1.98 1.97 55 4-Cl 3′-F 1.96 2.10 1.95 1.97
6a 4-CH2CH3 4′-C6H13 2.00 1.92 1.93 1.97 56a 4-Cl 3′-OCH3 1.76 2.03 1.98 1.94
7 4-CH2CH3 4′-C4H9 1.99 2.00 2.00 1.98 57 4-Br 3′-Br 1.99 2.01 2.00 1.97
8 4-CH2CH3 4′-OCF3 1.93 1.95 1.99 1.98 58 4-Br 3′-F 1.90 1.85 1.89 1.92
9 4-CH2CH3 4′-COCH3 2.00 2.01 1.99 1.98 59 4-OCF3 3′-CF3 1.70 1.30 1.40 1.57
10 4-CH2CH3 4′-OC6H5 1.98 2.11 2.00 2.01 60 4-OCF3 3′-F 1.62 1.28 1.31 1.47
11 4-CH2CH3 4′-CH2CN 2.00 1.99 1.99 2.02 61a 4-NO2 3′-F 1.23 1.07 1.04 1.07
12 4-CH2CH3 4′-CN 1.92 1.91 1.96 1.97 62 4-CH3 2′-F, 4′-F 1.99 2.10 2.01 2.02
13a 4-CH2CH3 4′-I 1.97 1.77 1.91 2.01 63a 4-CH3 2′-F 1.94 2.08 2.00 1.99
14 4-CH2CH3 4′-OC5H11 1.96 1.85 1.91 1.94 64 4-CH2CH3 2′-F 1.99 1.85 1.94 1.96
15 4-CH(CH3)2 4′-CF3 1.80 1.64 1.79 1.67 65 4-CH2CH3 2′-F, 4′-Br 2.00 1.72 1.89 2.01
16 4-OCH3 4′-OCF3 1.99 2.02 2.02 1.94 66 4-CH2CH3 2′-F, 4′-Cl 1.99 1.87 1.96 1.96
17 4-OCH3 4′-OC2H5 1.98 1.89 1.94 1.96 67 4-CH2CH3 2′-Cl, 4′-F 1.98 1.90 1.97 1.96
18 4-OCH3 4′-NO2 2.00 1.99 1.96 1.98 68 4-CH2CH3 2′-CH3, 3′-Cl 1.95 1.94 1.95 1.97
19 4-OCH3 4′-Cl 1.97 2.07 2.01 1.97 69 4-CH2CH3 2′-CH3, 4′-Br 1.98 1.88 1.95 1.89
20 4-OCH3 4′-C4H9 1.98 2.09 2.02 2.00 70a 4-CH2CH3 2′-Br, 4′-CH3 1.94 2.01 2.00 1.92
21 4-OCH3 4′-SCH3 1.96 1.99 1.96 1.93 71 4-CH2CH3 2′-OCH3, 4′-NO2 1.81 1.83 1.92 1.90
22 4-OC4H9 4′-CF3 1.00 1.26 1.09 1.14 72 4-OCH3 2′-F, 4′-F 1.97 1.99 1.98 1.97
23 4-OC6H5 4′-OC6H5 1.40 1.17 1.19 1.21 73 4-OCH3 4′-Cl, 2′-F 1.97 1.99 1.98 1.97
24 4-OC6H5 4′-Br 1.23 1.14 1.12 1.09 74 4-OCH3 2′-Cl 1.98 1.84 1.90 1.93
25a 4-OCF3 4′-Cl 1.52 1.24 1.26 1.36 75a 4-OCH3 2′-Br 1.92 1.82 1.88 1.92
26a 4-OCF3 4′-OCH3 1.40 1.05 0.98 1.06 76 4-OCH3 2′-CH(CH3)2 1.90 1.94 1.94 1.97
27 4-NO2 4′-C4H9 1.11 0.97 1.03 0.98 77 4-OCH3 2′,4′-(CH3)2 1.96 2.01 1.97 1.91
28 4-NO2 4′-F 0.90 1.05 0.97 1.06 78 4-OC2H5 2′-F, 4′-F 1.90 1.96 1.97 1.94
29 4-NO2 4′-CN 0.70 0.95 0.73 0.74 79 4-OC6H5 2′-F, 4′-F 1.23 1.48 1.52 1.36
30 4-CHF2 4′-OCH(CH3)2 1.70 1.51 1.65 1.57 80a 4-NO2 2′-F, 4′-F 1.23 1.09 0.99 1.11
31 4-CHF2 4′-Cl 1.52 1.50 1.60 1.52 81 4-OCF3 2′,4′-(CH3)2 1.23 1.21 1.26 1.21
32 4-CHF2 4′-OCH3 1.40 1.39 1.51 1.55 82 4-OCF3 2′-OCH3 0.70 1.01 0.92 0.84
33 4-Cl 4′-C6H5 1.98 1.88 1.92 1.96 83 4-CH2CH3 4′-OCH3 1.99 1.94 1.97 1.98
34a 4-Cl 4′-C4H9 1.97 1.90 1.95 1.92 84 4-CH2CH3 4′-Br 1.98 1.83 1.93 1.99
35a 4-CH2CH3 3′-NO2 1.99 1.98 2.00 1.97 85a 4-OCH3 4′-CF3 1.99 1.95 1.96 1.99
36 4-CH2CH3 3′-Cl, 4′-F 1.98 1.96 1.98 1.98 86 4-OCH3 4′-CH2CH3 1.98 2.12 2.01 2.02
37 4-CH2CH3 3′-NO2, 4′-F 1.98 2.01 2.00 2.02 87 4-Cl 4′-OC6H5 1.92 1.82 1.89 1.90
38 4-CH2CH3 3′-CH3, 4′-Br 1.98 1.98 1.99 1.96 88 4-Cl 4′-OCF3 1.82 1.90 1.91 1.86
39a 4-CH2CH3 3′-Cl, 4′-CN 1.98 1.90 1.96 1.92 89 4-CHF2 4′-Br 1.40 1.37 1.47 1.35
40a 4-C4H9 3′-Cl, 4′-F 1.30 1.24 1.11 1.06 90 4-OCF3 4′-F 0.90 1.20 1.20 1.27
41 4-OCH3 3′-CF3, 4′-Cl 2.00 2.09 1.97 2.03 91 4-OCH3 3′-NO2 1.99 2.06 1.98 2.02
42 4-OCH3 3′-CF3 2.00 2.01 1.98 2.02 92 4-OCH3 3′-F 1.97 2.03 2.00 1.94
43 4-OCH3 3′-Br 1.99 2.02 2.02 2.01 93 4-OC2H5 3′-Cl, 4′-F 1.94 1.92 1.93 1.97
44 4-OCH3 3′-Cl, 4′-F 1.98 2.05 2.01 1.95 94 4-OCF3 3′-Br 1.70 1.40 1.55 1.62
45 4-OCH3 3′-Cl, 4′-OCH3 1.98 2.06 1.95 1.91 95 4-C4H9 3′-F 1.00 1.19 1.01 0.99
46a 4-OCH3 3′,4′-Cl2 1.98 2.05 2.00 1.95 96 4-CH2CH3 2′-Cl, 4′-CH3 2.00 1.91 1.94 1.97
47a 4-OCH3 3′-F, 4′-CH3 1.98 2.04 1.96 1.95 97 4-CH2CH3 2′-CH3, 4′-OCH3 2.00 1.83 1.85 1.95
48 4-OCH3 3′-CH3 1.98 2.08 2.01 2.01 98 4-CH2CH3 2′,4′-Cl2 1.96 1.89 1.96 2.00
49 4-OC2H5 3′-Br 1.91 1.92 1.92 1.95 99 4-OCH3 2′-F 1.99 1.92 1.95 1.97
50 4-OC4H9 3′-F 1.00 1.22 1.04 1.07 100 4-CN 2′-F, 4′-F 1.23 1.24 1.24 1.20

a The test set.
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fungicidal activities against the rice blast. This study provides
a new and simple but efficient method, which is helpful to design
and screen some new chemicals against the rice blast.

MATERIALS AND METHODS

Data Set. The studied 100 thiazoline derivatives and their corre-
sponding fungicidal activities were taken from the literature (19) and
listed in Table 1. Disease severity was determined by the percentage
of infected leaf area, 5 days after the inoculation (19). The pots were
arranged as a randomized complete block with three replicates per
treatment. Three estimates for each treatment were converted into
percentage fungal control value (A) as the following:

A)% control value) 100[(a- b)/a] (1)
where a is the area of infection (%) on leaves sprayed with Tween 20
solution alone, b is the area of infection (%) on the treated leaves with
thiazoline derivatives dissolved in water + dimethyl sulfoxide (99 +
1 by volume) containing Tween 20 (250 mg/L).

To construct a predictive model, the selected thiazoline derivatives
were randomly divided into two subsets: a training set and a test set.
The training set including 80 compounds was used to select the most
important molecular descriptors and construct the regression models;
the test set did not take part in the construction of the models but was
used to test the stability of them.

Molecular Descriptors Generation. Two-dimensional structures of
the compounds were drawn using ISIS Draw 2.3 (20). All of the
structures were transferred into HyperChem 7.0 (21) and pre-optimized
using the MM+ molecular mechanics force field. A more precise
optimization was performed with the semi-empirical PM3 method in
MOPAC, and then the structures with minimum energy were obtained.
After these steps, the molecular descriptors can be calculated. In this
study, the molecular descriptors consist of two parts: one is calculated
by CODESSA (22), which contains five kinds of molecular descriptors
(23), and the other part is calculated by DRAGON 5.4 (18), which
contains 18 kinds of molecular descriptors (24). During the DRAGON
calculation process, to delete the redundant and non-useful information,
the descriptors with constant or near constant values and the ones that
were highly correlated pairwise (the correlation coefficients of these
two descriptors were bigger than 0.99) were excluded in the pre-
reduction step. Thus, there were a total of 1318 molecular descriptors
left for further analysis.

Principle Component Analysis (PCA). To build a regression model,
it is important to generate a validated training set, which can represent
the whole data set. In this study, the PCA method was used to analyze
the diversity of the training and test sets. Using the whole set of the
generated descriptors, the PCA method was used to deduce the
dimensions of the descriptors by eliminating the redundant information.
To perform PCA, the descriptors with constant or missing values should
be excluded. After this step, the PCA method was used for analysis,
for which PC1, PC2, and PC3 made 21.48, 13.86, and 8.98%
contribution to the total PCs, respectively. In all, these three PCs made
a total of 44.32% of the variation in the data and played major roles.
Figure 1 illustrates the scores plot of the compounds in the training
and test sets based on the three major PCs. From Figure 1, it can be
concluded that all of the compounds in the training set are well-
proportioned, distributing in the 3D spatial space. Thus, the results
confirmed that it was feasible for the method of splitting the data set
and the compounds in the training set were representative of the whole
data set.

Selection of the Structural Descriptors and Model Construction.
Once the molecular descriptors are generated, it is important to select
the major descriptors for further constructing of the regression model.
In this study, the GA-MLR method was used to select the most
important descriptors and build the linear regression model based on
the reason that the GA method was a promising parameters selection
method. At last, five molecular descriptors (see Table 2) were selected.
On the basis of these selected descriptors, the nonlinear regression
methods LS-SVM and PPR were used to build two nonlinear regression
models.

GA. After descriptor calculation, the GA method was performed to
search the feature space and select the major descriptors relevant to

the fungicidal activities against rice blast. This method can deal with
large search space efficiently and has less chance to become a local
optimal solution than the other algorithms. Basic theories and applica-
tions about GA have been found in many references (25, 26). Here,
we only briefly summarize the main procedure of GA. The first step
of GA is to generate a set of solutions (chromosomes) randomly, which
is called an initial population. Then, a fitness function is deduced from
the gene composition of a chromosome. The Friedman LOF function
was used in our study as the fitness function, which was defined as
follows:

LOF) {SSE/(1- (c+ dp/n))}2 (2)
where SSE is the sum of squares of errors, c is the number of the basis
function (other than the constant term), d is the smoothness factor
(default 0.5), p is the number of features in the model, and n is the
number of data points from which the model is built. Unlike the R2

error, the LOF measure cannot always be reduced by adding more terms
to the regression model. By limiting the tendency to simply add more
terms, the LOF measure resists overfitting of a model. Then, crossover
and mutation operations are performed to generate new individuals. In
the subsequent selection stage, the fittest individuals evolve to the next
generation. These steps of evolution continue until the stopping
conditions are satisfied. The MLR method is a simple and classical
regression method, which can provide explicit equations. In the current
work, the models were built using the simple MLR method with the
selected variables from GA, called GA-MLR.

LS-SVM. The LS-SVM, which was a modified algorithm of SVM,
was described clearly by Suykens et al. (27, 28) and used to build the
nonlinear model. Here, we only briefly describe the main idea of LS-
SVM for function estimation. In principle, LS-SVM always fits a linear
relation (y ) wx + b) between the regressors (x) and the dependent
variable (y). The best relation can be obtained by minimizing the cost
function (Q) containing a penalized regression error term

QLS-SVM ) 1
2

wTw+ γ∑
k)1

N

ek
2 (3)

subject to

Figure 1. PCA of the training and test sets.

Table 2. Involved and Statistical Parameters of the MLR Modela

abbreviation descriptors coefficient
confidence

intervals t test tp
Con. constant -497.049 74.749
MaxRHN maximum n-n

repulsion for a
H-N bond

9.309 1.391 8.515 1.37 × 10-12

RDF065u RDF065u -0.018 0.003 -5.504 5.10 × 10-7

Mor02m Mor02m -0.028 0.004 -6.683 3.81 × 10-9

L2s L2s -0.177 0.024 -10.151 1.11 × 10-15

R1v+ R1v+ -5.690 1.074 -3.595 5.82 × 10-4

a n, 80; R2, 0.8666; adjusted R2, 0.8575; Rcv
2, 0.8345; F, 96.11 (95% confidence

level).
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yk )wT�(xk)+ b+ ek, k) 1, ..., N (4)

where �:Rn f Rm is the feature map mapping the input space to a
usually high-dimensional feature space, γ is the relative weight of the
error term, and ek is error variables taking noisy data into accurate and
avoiding poor generalization.

LS-SVM considers this optimization problem to be a constrained
optimization problem and uses a language function to solve it. By
solving the Lagrange style of eq 3, the weight coefficients (w) can be
written

w)∑
k)1

N

Rkxk
Tx+ b with Rk ) 2γek (5)

By substituting eq 4 into the original regression line (y ) wx + b), the
following result can be obtained:

y)∑
k)1

N

Rkxk
Tx+ b (6)

It can be seen that the Lagrange multipliers can be defined as

Rk ) (xk
Tx+ (2γ)-1(yk - b) (7)

Finding these Lagrange multipliers is very simple as opposed to the
SVM approach, in which a more difficult relation has to be solved to
obtain these values. In addition, it easily allows for a nonlinear
regression as an extension of the linear approach by introducing the
kernel function. This leads to the following nonlinear regression
function:

f(x))∑
k)1

N

RkK(x, xk)+ b (8)

where K(x, xk) is the kernel function. The value is equal to the inner
product of two vectors x and xk in the feature space Φ(x) and Φ(xk);
that is, K(x, xk) ) Φ(x)TΦ(xk). The choices of a kernel and its specific
parameters together with γ have to be tuned by the user. The radial
basis function (RBF) kernel K(x, xk) ) exp(-|xk - x|2/σ2) is commonly
used, and then leave-one-out (LOO) cross-validation was used to tune
the optimized values of the two parameters γ and σ.

All computations implementing LS-SVM were performed using the
Matlab/C toolbox (29).

PPR. PPR developed by Friedman and Stuetzle (30) is a powerful
tool for seeking the interesting projections from high-dimensional data
into lower dimensional space by means of linear projections. Therefore,
it can overcome the curse of dimensionality because it relies on
estimation in at most trivariate settings. At present, it has been
successfully applied to tackle some chemical problems (31, 32).
Friedman and Stuetzle’s concept of PPR avoided many difficulties
experienced with other existing nonparametric regression procedures.
It does not split the predictor space into two regions, thereby allowing,
when necessary, more complex models. In addition, interactions of
predictor variables are directly considered because linear combinations
of the predictors are modeled with general smooth functions. Another
significant property of PPR is that the results of each interaction can
be depicted graphically. The graphical output can be used to modify
the major parameters of the procedure: the average smoother bandwidth
and the terminal threshold. The basic theory of PPR can be found in
refs 16, 33, and 34. Here, we only give a brief description. Given the
(k × n) data matrix X, where k is the number of observed variables
and n is the number of units, and an m-dimensional orthonormal matrix
A (m × k), the (m × n) matrix Y ) AX represents the coordinates of
the projected data onto the m-dimensional (m < k) space spanned by
the rows of A. Because such projections are infinite, it is important to
have a technique to pursue a finite sequence of projections that can
reveal the most interesting structures of the data. Projection pursuit
(PP) is such s powerful tool that combines both ideas of projection
and pursuit (13, 32). In a typical regression problem, PPR aims to
approximate the regression pursuit function f(x) by a finite sum of ridge
functions with suitable choices of Ri and gi

g(p)
(x))∑

i)1

p

gi(Ri
Tx) (9)

where Ri values are m × n orthonormal matrices and p is the number
of ridge functions.

All calculation programs implementing PPR were written in R-file
under R2.3.1 environment (35) running operating system on a Pentium
IV with 512 M RAM.

Evaluation of Regression Models. Once the models are generated,
it is important to evaluate the availability of them. In this study, the
root-mean-square error (RMSE) is used to assess the predictive ability
and accuracy of the models and the relative standard error (RSE) is
used to estimate the relative error of the predictors. The representations
of the two methods are defined below

RMSE)�∑ i)1

ns
(yke - ykp)2

ns
(10)

RSE)�∑ (yke - ykp)2

∑ ykp
2

× 100% (11)

where k represents the kth molecule, yke is the desired output
(experimental property), ykp is the actual output of the models, and ns

is the number of compounds in the analyzed set.

RESULTS AND DISCUSSION

Results of the GA-MLR Method. A variety of subset sizes
of descriptors were investigated to determine the optimum
number of descriptors in the regression model. If adding another
descriptor did not significantly improve the statistics of the
model, it was determined that the optimum subset had been
achieved. The influences of the number of the descriptors on
the coefficients of determination (R2) and RMSE to the training
and test sets are shown in parts a and b of Figure 2, respectively.
The higher the values of R2 for the training and test sets and
the lower the RMSE, the better the results. From Figure 2, it
was clear to conclude that the five descriptors were the best
selection. The involved descriptors and the statistical parameters
of this model are summarized in Table 2, and the correlation
matrix of these selected descriptors is shown in Table 3. The
statistical results of the MLR model for the training and test
sets are listed in Table 4, and the predicted fungicidal activities
are listed in Table 1. Figure 3 shows the predicted log A versus
the experimental values for all of the compounds in the training
and test sets.

The developed QSAR models should not only offer a reliable
prediction capability but also gain insight into the factors that
are likely to influence the fungicidal activities of thiazoline
derivatives by interpreting the meaning of the selected descrip-
tors. The five selected molecular descriptors were divided into
two kinds: one is a quantum chemical descriptor (MaxRHN),
and the other class is conformational (3D) descriptors, including
one geometry, topology, and atom-weights assembly (GET-
AWAY) descriptor (R1v+), one 3D molecule representation
of structures based on electron diffraction (MoRSE) descriptor
(Mor02m), one radial distribution functions (RDF) descriptor
(RDF065u), and one weighted holistic invariant molecular
(WHIM) descriptor (L2s).

According to the t-test values of the selected descriptors, the
most important descriptor is L2s. It is the second-component
size directional WHIM index/weighted by atomic electrotopo-
logical states. It belongs to WHIM descriptors, which are 3D
molecular indices that represent different sources of chemical
information. The WHIM descriptors contain information about
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the whole 3D molecular structure in terms of size, shape,
symmetry, and atom distribution. They are calculated from (x,
y, and z) coordinates of a molecule within different weighting
schemes in a straightforward manner and represent a very
general approach to describe molecules in a unitary conceptual
framework. This descriptor L2S is calculated from the electro-
topological weights on the hydrogen-depleted structures and
could be used to analyze the shape and symmetry of the
chemical structures. It can be used to distinguish different
conformations of the same molecule and especially for different
geometric isomers (36).

The other one important descriptor is MaxRHN (37). It is a
quantum chemical descriptor. This descriptor describes the

nuclear repulsion energy between two given atomic species
(atoms A and B) in the molecule and was calculated as follows:

Enn(AB)) ZAZB/RAB (12)

where ZA and ZB are the nuclear (core) charges of atoms A and
B, respectively, and RAB is the distance between them. This
energy describes the nuclear repulsion driven processes in the
molecule and may be related to the conformational (rotational
and inversion) changes or atomic reactivity in the molecule.

The 3D MoRSE (38) descriptor, Mor02m (39), is the meaning
of signal 2/weighted by atomic masses atomic mass weighted,
and it contributes negatively to the fungicidal activity. The
MoRSE descriptor calculated by summing atomic weight is
viewed by different angular scattering functions. The values of
these functions are calculated at 32 evenly distributed values
of scattering angles in the range of 0-32 Å-1 from the 3D
atomic coordinates of a molecule. It is calculated using the
following function:

Mor(s, w)) I(s, w))∑
i)2

n

∑
j)1

i-1

wiwj

sin(srij)
srij

(13)

where s is the scattering angle, rij is the Euclidean distance
between the atoms i and j, and wi and wj are the weights of the
atoms i and j, respectively. The notation m in the descriptor
Mor02m represents the after digital value used for atomic
weights, which was contributed especially through atomic
masses.

The RDF descriptor (3D), RDF065u, is the meaning of radial
distribution function 6.5/unweighted. The RDF descriptors are
based on the distance distribution in the molecule. The radical
distribution function of an ensemble of n atoms can be
interpreted as the probability distribution of finding an atom in
a spherical volume of radius R. A typical RDF descriptor is
denoted by RDFsw, where s takes the values 10 e s e 155 in
units of 5 andw ∈ {u, m, V, e, p}, and is defined as the following
expression:

RDF(R, w)) f∑
i)1

n-1

∑
j)i+1

n

wiwje
-�(R - Rij)2 (14)

where f is a scaling factor, rij is the Euclidean distance between
the atoms i and j, wi and wj are the weights of the atoms i and
j, respectively, and � is the smoothing parameter, which defines

Figure 2. Procedure of the selection of descriptors. (a) R2 for the training
set and Rcv

2 for the training set versus the number of the descriptors. (b)
RMSE for the training and test sets versus the number of descriptors.

Table 3. Correlation Matrix of the Selected Molecular Descriptors

MaxRHN RDF065u Mor02m L2s R1v+

MaxRHN 1.0000
RDF065u -0.1778 1.0000
Mor02m 0.2575 -0.2815 1.0000
L2s 0.0333 -0.0864 0.6338 1.0000
R1v+ -0.0372 -0.4773 -0.0157 0.1040 1.0000

Table 4. Comparison of R2, RMSE, and RSE for Different QSAR Models

methods data set R2 RMSE RSE

GA-MLR
trainging set 0.8666 0.1356 7.57
test set 0.8736 0.1538 8.56
whole set 0.8505 0.1395 7.78

LS-SVM
trainging set 0.9412 0.0903 3.33
test set 0.9392 0.1496 8.38
whole set 0.9173 0.1049 5.85

PPR
trainging set 0.9576 0.0768 2.75
test set 0.9431 0.1268 7.03
whole set 0.9395 0.0890 4.96

Figure 3. Plot of experimental log A values versus predicted values (
S (note: S ) |Exp. - Pred.|; Exp., the experimental values from ref 19;
Pred., the predicted values by GA-MLR).
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the probability distribution of the individual interatomic distance.
� can be interpreted as the temperature factor that defines the
movement of the atoms. The negative coefficient of the
descriptor indicates that it was also negative to the fungicidal
activity.

The last descriptor is a GETAWAY descriptor, R1v+. It is
the abbreviation of R maximal autocorrelation of lag 1/weighted
by atomic van der Waals volumes. The GETAWAY descriptors
are chemical structure descriptors encoding the 3D information
of the molecule derived from a new representation of molecular
structure, the molecular influence matrix (MIM), which was
denoted by H and defined as the following:

H)M(MTM)-1MT (15)

where M is the molecular matrix constituted by the centered
Cartesian coordinates x, y, and z of the molecule atoms
(including hydrogens) in a chosen conformation and the
superscript T refers to the transposed matrix. Thus, it has a
strong relationship with the shape and size of the molecule. The
descriptor R1v+ also relates to the geometry of the molecule.

From the above discussion, it can be seen that all of the
descriptors involved in the model have physical and chemical
meanings. They can also account for the structural features
responsible for the fungicidal activity of thiazoline derivatives.
On the basis of the coefficients and the values of the t test, it
could be easier to see the kind of thiazoline with smaller values
of RDF065U, Mor02m, L2s, and R1v+ and a bigger value of
MaxRHN will be more effective against M. grisea. At last, it
can be concluded that the fungicidal activity of the thiazoline
derivatives depends upon the 3D and conformational structures
of the molecule.

Results of the LS-SVM Method. To construct a more
accurate model, the LS-SVM method was also performed to
build a nonlinear prediction model with the same features after
the GA-MLR model was generated. In this study, RBF kernel
was used as the kernel function. Thus, γ (the relative weight of

the regression error) and σ (the kernel parameter of the RBF
kernel) need to be optimized. Here, the optimal parameters are
found by an intensive grid search method. The result of this
grid search is an error-surface spanned by the model parameters.
A robust model is obtained by selecting those parameters that
give the lowest error in a smooth area. To find the optimized
combination of the parameters γ and σ, a process of 10-fold
cross-validation of the whole training set was performed.

The parameter (σ) of the RBF kernel in the style of σ2 and
the parameter γ were tuned simultaneously in a grid 20 × 20
ranging from 1 to 2000 and from 0.5 to 500, respectively. In
this way, parameter optimization was performed in different
orders of magnitude. Because the grid search has been performed
over just two parameters, a contour plot of the optimization
error can be visualized easily (Figure 4). This is an advantage
of LS-SVM compared to the traditional SVM, in which three
parameters have to be optimized. From Figure 4, the optimal
parameter settings can be selected from a smooth subarea with
a low prediction error. The selected optimal values of γ and σ2

are 81.4934 and 39.238 respectively, marked by the small square
in the figure. The cost value of the 10-fold cross-validation is
0.017 271.

The prediction results of the optimal LS-SVM model are
shown in Table 1 and Figures 5 and 6. The statistical
parameters of the LS-SVM are listed in Table 4.

Results of the PPR Method. To compare the results of
different nonlinear chemometrics methods, the PPR method was
applied to build the other nonlinear model with the same five
selected descriptors. In the PPR approach, there are several
parameters needed to be adjusted. The parameters “nterms” and
“max.terms” represent the number of terms to include in the
final model and the number of maximum terms to choose from
when building the model, respectively. The “df” defines the
smoothness of each ridge term by the requested equivalent
degrees of freedom, if “sm.method” is “spline”. The levels of
optimization (argument “optlevel”) differ in how thoroughly the

Figure 4. Contour plot of the optimization error for LS-SVMs when optimizing the parameters σ and γ in the regression problem. Note that the small
square indicates the selected optimal settings.
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models are refitted during this process. At level 0, the existing
ridge terms are not refitted. At level 1, the projection directions
are not refitted but the ridge functions and the regression
coefficients are refitted. Levels 2 and 3 refit all of the terms
and are equivalent for one response; level 3 is more careful to
rebalance the contributions from each regressor at each step and
therefore is a little less likely to converge to a saddle point of
the sum of squares criterion. In this investigation, the four
parameters “nterms”, “max.terms”, “optlevel”, and “df” were
determined as 3, 15, 3, and 5, respectively. The predicted results
and the statistical parameters of the optimal PPR model were
shown in Tables 1 and 4, respectively. The scatter plot was
given in Figure 7. From Figure 7 and Table 4, it can be seen
that the predicted values were in agreement with the experi-
mental log A values for almost all of the compounds.

Comparison of the Results Obtained by Different Ap-
proaches. To check the superiority of three different methods
(GA-MLR, LS-SVM, and PPR), the predicted accuracy for
different data sets (training set, test set, and whole set) were
collected together and shown in Table 4. As seen from this
table, the nonlinear regression methods LS-SVM and PPR show
better predictive capability and the corresponding prediction
results were in better agreement with the experimental values.

In summary, the three machine learning methods GA-MLR,
LS-SVM, and PPR were used to develop the linear and nonlinear
QSAR models for predicting the fungicidal activities of thia-
zoline derivatives against rice blast inhibitors. The obtained
models clearly demonstrate that there are strong correlations
between the structural information and fungicidal activities of
these compounds. The prediction results indicate that the LS-
SVM and PPR methods are powerful and promising tools for
QSAR analysis. The models developed in this study identify
and provide insight into the structural features related to the
biological activity of these compounds. Furthermore, this study
provides instruction for further design of thiazoline derivatives
with higher inhibitory activity for the protection of rice blast
disease.

ABBREVIATIONS USED

GA-MLR, genetic algorithm-multilinear regression; LS-SVM,
least-squares support vector machine; PPR, project pursuit
regression; QSAR, quantitative structure-activity relationship;
MLR, multiple linear regression; PLS, partial least-squares;
ANN, artificial neural network; PCA, principle component
analysis; RMSE, root-mean-square error; RSE, relative standard
error; MaxRHN, maximum n-n repulsion for a H-N bond;
GETAWAY, geometry, topology, and atom-weights assembly;
MoRSE, molecule representation of structures based on electron
diffraction; RDF, radial distribution function; WHIM, weighted
holistic invariant molecular.
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